NONLINEAR PROBLEMS OF THE THERMAL
CONDUCTIVITY EQUATION

N. N. Kochina UDC 532.54

The asymptotic behavior of solutions of parabolic equations at infinite times has been inves-
tigated for various cases [1-6]. Two initial boundary-value problems are considered in this
paper. The solution of the thermal conductivity equation with a nonlinear right-hand side is
found, including also nonlinear boundary conditions. It is shown that the solution of the cor-
responding problem tends either to a stable, steady-state solution,orto a periodic solution,
depending on the initial values of the functions and constants appearing in the conditions of
the problem. Other papers [7, 8] are devoted to finding the periodic solutions of these two
problems encountered in hydrodynamics (diffusion, underground hydrodynamics), and to
studying the asymptotic behavior of the corresponding initial boundary problems.

1. Consider the initial boundary-value problem in the interval 0 < x < {
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—d for u(2° £) > Uy,
u(O,t):O, u(l1t)=07 u(x,O):cp(a:)

Here, x° is some internal point of the interval 0 < x < /.

It is easily seen that the equation and boundary conditions (1.1) are satisfied by the steady-state so-
lution

(1.2)
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v(z) = z(l -— x)

d 1.3)

w(x) =Tz

z(l—x)
An investigation by the small perturbation method reveals that these steady-state solutions are un-
stable.

Let us assume for definiteness that for ¢(x°) < u, F(w) = ¢, and that for ¢(x°) > u, Flw) = —d. Upto
some time the solution of problem (1.1) is described by the expressions \

uy (2, 1) = 2 {Cpexp (— halt) — coy [ — 0xp (— Ay2%)]} sin 7= .4)
n==l

Uy (x, ) = Z {Dy, exp (— M2t) + dai, [1 — exp (— Ag2t)]} sin —ﬂ—'llf— 1.5)
Ti==]
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Equation (1.4) holds for ¢ (x°) < u,, and 1.5) for ¢(x?) > u,.

Here, as in [1], we introduce the notation

xan 2LB(—1)r—1
hn‘-:'-l_—" an=—L(aTnﬂz—;§~_L (n=1,2,,__) (1.6)

where C, and Dy are Fourier coefficients of the function ¢ (x), assumed to satisfy the Dirichlet condition

1
C,.=Dn=—?~8q>(a:)sinf_5;£dx 1.7)
0

It is easy to verify that for time t tending to infinity the solution u; (x, t), determined by Eq. (1.4),
tends to v(x) and the solution u,(x, t) (1.5) to w(x). Thus, if ¢(x°) < v(x°) < u,, then for infinite time t the so-
lution (1.4) tends to the steady-state solution v(x)., Similarly, if ¢(x°) >uy and W(x°) >Uxx, (1.5) tends to the
steady-state solution w(x). It can be seen that one of four situations occurs concerning the behavior of
the solution of problem (1.1), depending on the reflections between the quantities ux,Usx, v(x°), and w(x®).

Examples of the behavior of u(x°®, t) for these cases are represented in Figs. 1-4, respectively.
1) u,,< wix?) < vix?) < u,.

If ¢(x°) < u,, the solution is described by Eq. (1.4). For t—<, u;(x, t}—~v(x), i.e., the solution tends
to the steady-state solution (1.2) (Fig. 1, curve 1) (in the viscous case, if ¢ (x°) < v{x°%).

If 9(x%) > u,, the solution is described by Eq. (1.5). For t-=, uylx, t}~w(x), i.e., the solution tends
to the steady-state solution (1.3) (Fig. 1, curve 2).

2) wx?)<u,, <vix)<u,.

For ¢(x) < u,, the solution is described by Eq. (1.4). For t—, u(x, t} ~v{) (Fig. 2, curve 3).

If (x°) > u,, the solution is described by Eq. (1.5) [uy(x, t} up to time t = Ty, when u,(x°, Ty) =u, .
Starting at time t = Ty, the solution is described by Eq. (1.4) [u(x, t)], in which t must be replaced by t—Ty,

and C, are the Fourier coefficients of the function u,(x, Ty), where uy(x, t) is given by (1.5). For t—,
u {x, t) ~v{x) (Fig. 2, curve 4).

3) u,, <wk)<u, <vx).

If ¢(x°) < u,, the solution is described by Eq. (1.4) [uy(x, t)] up to time t = Ty, when uy(x°, Ty) =u_, .
Starting at Ty, the solution is described by (1.5) [uy(x, t)l, where t must be replaced by t—Ty, and D, are
the Fourier coefficients of the function uy (x, Ty). For t —«, uy{x, t) ~w(x) (Fig. 3, curve 5).

If ¢ (x°) > u,, the solution is described by Eq. (1.5) [uy(x, t)]. For t—=, uy(x, t) »wx) (Fig. 3, curve6).
Two more situations, similar to those described above, are still possible.

4) wx?) <u,, < u, < v(x°).

Kok
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If ¢(x°) < u,, the solution is described by Eq. (1.4) until t = Ty,
when u; (x°, Ty) = u,, then, by Eq. (1.5) untilt=T,, when uy(x°, Ty =
u,,and so forth. Consequently, the solution has an oscillatory na-
ture. Under some restrictions it was shown [7] that for w(x") < u_, <

u, < v(x°) this solution tends to a periodic solution (Fig. 4, curve 7).

ulzft)

For ¢(x°) > u,, the solution has again an oscillatory nature,
described by Eq. (1.5), then, by Eq. (1.4), and becoming periodic for
infinite time (Fig. 4, curve 8).

Thus, for infinite t the solution of the initial boundary-value
problem tends either to one of the two stable, steady-state solution
or the periodic solution found earlier [7]. Consequently, a stable
region occurs where self-oscillations are excited.

Periodic solutions of Rayleigh systems with various parameter
distributions were considered in [9, 10].

Fig. 3 2. Consider now another initial boundary-value problem in the
interval =l < x < 0
v futelt ou 0%
@~ Yz
s du (—l1, t) ‘
) —— =Flu(—=10], u®©,1=0, u(z0) =g 2.1
7\ /¢ 7\ /¢
g /\/ W \ ¢ Here, F(u) is a three~valued S-shaped function
G- N — = A hu+ gy for u<Tuy
W) for Uy < U < Uy 2.9
Flo= 00> e 023> 1, 5 30) @2
v hu g,  for u>uy,
Fig. 4 where f£(u) is a continuous function with a negative derivative f'(u) < 0,

so that £(0) =0, f(u ) =hu_+qy, flu,,) =hu_, +q,. (Here, and in
what follows, the prime denotes differentiation.)

The problem (2.1), (2.2) has the following steady-state solution:

u=0, u=47 @, <-4l<u, i=12..) (2.3)
v(z) = gz / (1 -+ Rl (2.4)
w (@) = gz [ (1 4 ki) 2.5)

Aj is the root of the equation
Ay =f(—4; ]

It is easy to see that the steady-state solutions (2.4) and (2.5) are stable.

The steady-state solution (2.3) corresponds to the branch F(u) = f(u). As in the case u = 0 [11], the
solution u = Ajx is stable, if the inequality —/f'(—A;l) < 1 is satisfied, and is unstable, if —/f'(=A;¢) >1. Due
to (2.1}, (2.2) the study of instability of the steady-state solution u = Ajx is reduced to looking for a pertur-
bation u' = (x, t) of the form e)‘ntzpn(x) and to solving the equation

a*p” (2) = Ay (2) (2.6)
with boundary conditions

Yo' (=) = (— Ad) b, (—1),. . (0) =0 (2.7)

so as to determine the function yp(x). Equation (2.6) and the second of conditions (2.7) are satisfied by the
functions ¥ (x) = sin wyx and y(x) = sh Ox. In the first case, we obtain from (2.6) and (2.7), the following
equations for the quantities wyp and Ap:
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(2.8)

)

teoud = —Fr=ay

Ap=—a?0.' n=1,2,..)

and, in the second case, we have

Q

- 2.9
= =

thQl = —
Thus, in the first case the inequality A, < 0 (stable solution) is satisfied, and in the second case, the
inequality A > 0 (unstable solution). It is clear from the first equality of (2.9) that instability occurs for

—If (— A >1 (2.10)

In particular, for the steady-state solution u = 0, which holds for any function f(u) with the properties
described above. The stability and instability conditions acquire the form

—if O <1, =l 0 >1 @.11)

We turn now to the case when s, the number of roots of the equation A = f(—Al), is finite, while
—If'(—Ajl) » 1 (i=1,2,...,8). For definiteness let the following inequalities be satisfied:

Ugy < — Al << — Al < o< — A l<— AL < uy

Stable steady-state solutions will then alternate with unstable ones. Let the steady~-state solution
u = Ajx be unstable. In that case, u = Aj-yxand u = Aj;1x are stable. As was done for the case u = 0 [11],
the nonlinear integral equation to which the initial boundary-value problem (2.1), (2.2) is reduced, with the
replaclzement F(u) = f(u), can be compared with the corresponding linear integral equation, for which F(u) =
Aj=I (u+ Ayl)-

It appears that if —Aj_4/ < ¢(~1) < —A;l, then, for t —«, the solution of the nonlinear problem tends
to Aj-ix. If —Ajl < @(—1) < —Aj.1!, the solution tends to Aj.,x. If the steady-state solution u = Agx, and
if —Agl < @(=1)< u,, the solution of the problem tends to Agx. Similarly, if u = Ajx, and if u < @(=0) <
—Ayl, the solution tends to Ajx. If the steady-state solution Agx is unstable, and if —Agl < (=) < u,, the
function u(—1, t) reaches the value u,_ ata finite interval Ty. Similarly, if the steady-state solution u = Asx
is unstable, then, for u, < ¢(—I) < —Ayl, the function u(—1Z, t) reaches the value u_, at time Ty. Starting
from this moment, the function F(u} appearing in the boundary condition acquires either the value hu+ q4,
or hu+gy- The branch F(u) = f(u) should not be considered now. The solution of the problem (2.1), (2.2) is
described by the expressions

~

Uy (x,2) = -—1—1‘%”— - Z Cpexp(— Ayt)sina, (2.12)
n=1

Ug(z, 1) = 7 (ixhl + D) Dyexp(— Ay2) sin anz (2.13)
i ==

where Ay are the roots of the equation

tgtel o I (an=~’“ﬂ. ‘_n-=1,2,...>» 2.14)

ah a

Cp and Dy, are the Fourier coefficients of the functions ¢ (x)—q;x/(1 + hi) and ¢ (x)—qyx/1 + hi), respectively,
[8]. In Egs. (2.12), (2.13), the initial moment of time t = 0 should be taken as t = Ty, and the initial function
¢(x) as the function u(x, Ty). Here, ulx, t) is the solution of the problem (2.1), (2.2) for the branch F(u) =
fW. If =Agl< (= < u,, Eq. (2.13) is used, and if u,, < ¢ (=) < —A4l, Eq. (2.12) is used.

If the branches F(u) =hu+q; (j =1, 2) are considered as functions of F(u), we assume again for def-
initeness that for ¢(~I) < u_, the solution (2.12) holds, and for ¢(=I) > u, solution (2.13) holds.

As in the first problem, if ¢ (—0) < v(=i) < u_, then for t —,u; (x, ) ~v(x); if @(=I) > u  and w(=i) >
u,,» then for t —, u,(x, t) ~w(x). Thus, putting x° = —/, for t—=, we note that the solution of problem
(2.1), (2.2) either tends to one of the stable, steady-state solutions (2.3), or all possible shapes of the solu-

tion of problem (1.1), described in the previous sections (Figs. 1-4), are conserved for this problem. The
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oscillatory solution earlier obtained [8] is represented in Fig. 4, and it is seen that under some conditions
it tends to a periodic solution.

The solution of the second problem thus also tends either to one of the steady-state solutions (2.3)-

(2.5), or to a periodic solution.
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